Patch cramming reveals the mechanism of long-term suppression of cyclic nucleotides in intact neurons.
نویسندگان
چکیده
To understand cyclic nucleotide dynamics in intact cells, we used the patch-cramming method with cyclic nucleotide-gated channels as real-time biosensors for cGMP. In neuroblastoma and sympathetic neurons, both muscarinic agonists and nitric oxide (NO) rapidly elevate cGMP. However, muscarinic agonists also elicit a long-term (2 hr) suppression (LTS) of subsequent cGMP responses. Muscarinic agonists elevate cGMP by triggering Ca2+ mobilization, which activates NO synthase to produce NO, leading to the activation of soluble guanylate cyclase (sGC). Here we examine the mechanism of LTS. Experiments using direct intracellular cGMP injection demonstrate that enhancement of phosphodiesterase (PDE) activity, rather than depression of sGC activity, is responsible for LTS. Biochemical measurements show that both cGMP and cAMP content is suppressed, consistent with the involvement of a nonselective PDE. Application of pharmacological agents that alter Ca2+ mobilization from intracellular stores and experiments involving injection of the Ca2+ chelator BAPTA show that Ca2+ mobilization is necessary and sufficient for LTS induction but also show that LTS maintenance is Ca2+-independent. Protein phosphatase injection reverses LTS, and specific inhibitors of Ca2+/calmodulin kinase II (CaMKII) prevent induction and inhibit maintenance. The switch between the Ca2+ dependence of LTS induction to the Ca2+ independence of LTS maintenance is consistent with CaMKII autophosphorylation, similar to proposed mechanisms of hippocampal long-term potentiation. Because the molecular machinery underlying LTS is common to many cells, LTS may be a widespread mechanism for long-term silencing of cyclic nucleotide signaling.
منابع مشابه
Real-Time Patch-Cram Detection of Intracellular cGMP Reveals Long-Term Suppression of Responses to NO and Muscarinic Agonists
Cyclic GMP (cGMP) is a crucial intracellular messenger in neuronal, muscle, and endocrine cells. The intracellular concentration of cGMP is regulated by various neurotransmitters, including acetylcholine (ACh) and nitric oxide (NO). While much is known about the biochemical steps leading to cGMP synthesis, little is known about cGMP kinetics in intact cells. Here, we use "patch-cramming," in wh...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 20 شماره
صفحات -
تاریخ انتشار 2002